Experimental Investigation on Spontaneously Active Hippocampal Cultures Recorded by Means of High-Density MEAs: Analysis of the Spatial Resolution Effects
نویسندگان
چکیده
Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs) coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (interelectrode separation of 21 mum) from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially downsampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR), mean firing rate (MFR) and mean bursting rate (MBR). Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signaling at both local and global neuronal circuitries.
منابع مشابه
The Influence of Neuronal Density and Maturation on Network Activity of Hippocampal Cell Cultures: A Methodological Study
It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuro...
متن کاملMulti-electrode arrays technology for the non-invasive recording of neural signals: a review article
The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...
متن کاملRecent Advances in High Cell Density Cultivation for Production of Recombinant Protein
This paper reviews recent strategies used for increasing specific yield and productivity in high cell density cultures. High cell density cultures offer an efficient means for the economical production of recombinant proteins. However, there are still some challenges associated with high cell density cultivation (HCDC) techniques. A variety of strategies in several aspects including host design...
متن کاملInvestigation of the effect of Ginkgo biloba leaf extract on spatial memory impairment and hippocampal neuronal loss caused by diabetes induced by streptozotocin in rats
Background and Aim: Learning and memory defect occurs following chronic diabetes with uncontrolled blood glucose. Ginkgo leaf extract improves brain blood flow. Also it contains antioxidant components and has shown beneficial effects in neurological diseases. In this study we investigated the effects of Ginkgo leaf extract on spatial memory impairment and hippocampal neuronal loss caused by dia...
متن کاملTracking the evolution of neural network activity in uninterrupted long-term MEA recordings
Most cell culture studies rely on taking representative, quasi-static data snapshots during limited time windows. To permit continuous experimentation, we devised an automated perfusion system based on microfluidic cell culture chambers for microelectrode arrays (MEAs). The design is based on a perfusion cap fabricated in replica-molding technology and on a hermetically shielded, gravity-driven...
متن کامل